8 research outputs found

    The Role of VIP SCN Neurons in Circadian Physiology and Behavior

    Get PDF
    Located in the ventral hypothalamus, the suprachiasmatic nucleus (SCN) is necessary for entraining daily rhythms in physiology and behavior to environmental cues. Though the 20,000 neurons of the SCN uniformly express GABA, they differ greatly in neuropeptide content. One anatomically and functionally distinct class of neuropeptidergic SCN neurons is vasoactive intestinal polypeptide (VIP). Expressed by approximately 10% of SCN neurons, VIP is necessary for synchronizing single-cell SCN rhythms to produce coherent output and sufficient for entrainment. However, little is known about the firing activity of these neurons releases VIP and results in circadian entrainment. We utilized multielectrode array technology and optogenetics to optically tag VIP neurons expressing Channelrhodopsin-2 (ChR2) following three days of spontaneous activity recordings. We find that VIP neurons have circadian firing rates with two distinct patterns, irregular and tonic, that constitute two separate electrophysiological classes. Using optogenetic stimulation in vitro and in vivo, we show that high frequency firing intervals are sufficient to phase shift and entrain circadian rhythms in gene expression and locomotor activity through VIP release. Interestingly, low frequency firing intervals do not phase shift the SCN in vitro and entrain behavioral rhythms more gradually. We also find that stimulation of VIP neurons can only phase delay and entrain rhythms during late subjective day and early subjective night. We conclude that VIP neurons entrain behavior in a time-of-day- and frequency- dependent manner. Complementary to testing the sufficiency of VIP neuronal firing for entrainment, we tested the necessity of VIP neurons for circadian rhythms in the adult SCN circuit. Using Cre-lox technology in vivo, we triggered adult-onset apoptosis in VIP SCN neurons. We found that over 80% of these mice retained circadian rhythms. We contrast this to Vip null mice, where over 60% lose rhythms. A majority of our mice lacking VIP neurons had decreased locomotor activity periods and increased daily onset variability, which strongly correlated with the intensity of VIP staining. In vitro, deletion of VIP neurons leads to a dramatically reduced amplitude of circadian gene expression and decreases in synchrony on the single-cell level. We conclude that the difference between adult deletion of VIP neurons and Vip null mice suggests a role for VIP in SCN development and in the developed adult circuit VIP neurons are not necessary for rhythmicity. Finally, we dissected the role of VIP SCN neurons in the daily rhythms in glucocorticoids, by characterizing the anatomy of VIP projections and testing the necessity of VIP neurons. We labeled VIP SCN neurons that project dorsally to the paraventricular nucleus of the hypothalamus (PVN) using a two-color tract tracing experiment. We concluded that a small bilateral subset of VIP SCN neurons projects to each side of the PVN. To test VIP neurons function, we deleted VIP SCN neurons in the adult and measured corticosterone rhythms under constant conditions for 2 days. We find that rhythms in corticosterone are severely dampened with the loss of VIP neurons with peak corticosterone only reaching approximately 50% of wild- type levels. We conclude that VIP SCN neurons contribute stimulatory input to the circadian rhythm in corticosterone. Taken together, these data suggest that VIP SCN neurons are a heterogeneous class of SCN neurons with multiple roles in adult SCN entrainment, development and the regulation of glucocorticoid rhythms

    Representation of ethological events by basolateral amygdala neurons

    Get PDF
    The accurate interpretation of ethologically relevant stimuli is crucial for survival. While basolateral amygdala (BLA) neuronal responses during fear conditioning are well studied, little is known about how BLA neurons respond during naturalistic events. We recorded from the rat BLA during interaction with ethological stimuli: male or female rats, a moving toy, and rice. Forty-two percent of the cells reliably respond to at least one stimulus, with over half of these exclusively identifying one of the four stimulus classes. In addition to activation during interaction with their preferred stimulus, these cells signal micro-behavioral interactions like social contact. After stimulus removal, firing activity persists in 30% of responsive cells for several minutes. At the micro-circuit level, information flows from highly tuned event-specific neurons to less specific neurons, and connection strength increases after the event. We propose that individual BLA neurons identify specific ethological events, with event-specific neurons driving circuit-wide activity during and after salient events

    Multispectral tracing in densely labeled mouse brain with nTracer

    Get PDF
    SUMMARY: This note describes nTracer, an ImageJ plug-in for user-guided, semi-automated tracing of multispectral fluorescent tissue samples. This approach allows for rapid and accurate reconstruction of whole cell morphology of large neuronal populations in densely labeled brains. AVAILABILITY AND IMPLEMENTATION: nTracer was written as a plug-in for the open source image processing software ImageJ. The software, instructional documentation, tutorial videos, sample image and sample tracing results are available at https://www.cai-lab.org/ntracer-tutorial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Network-mediated encoding of circadian time: The suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back

    Get PDF
    The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∼24 h clock not only in the living animal, but also when isolated in culture. This “clock in a dish” can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)](i), and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms

    A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.

    No full text
    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag

    Interleukin-7 (IL-7) Treatment Accelerates Neutrophil Recruitment through γδ T-Cell IL-17 Production in a Murine Model of Sepsis ▿

    Get PDF
    The sepsis syndrome represents an improper immune response to infection and is associated with unacceptably high rates of mortality and morbidity. The interactions between T cells and the innate immune system while combating sepsis are poorly understood. In this report, we observed that treatment with the potent, antiapoptotic cytokine interleukin-7 (IL-7) accelerated neutrophil recruitment and improved bacterial clearance. We first determined that T cells were necessary for the previously observed IL-7-mediated enhanced survival. Next, IL-7 increased Bcl-2 expression in T cells isolated from septic mice as early as 3 h following treatment. This treatment resulted in increased gamma interferon (IFN-γ) and IP-10 production within the septic peritoneum together with local and systemic increases of IL-17 in IL-7-treated mice. We further demonstrate that the increase in IL-17 was largely due to increased recruitment and production by γδ T cells, which express CXCR3. Consistent with increased IL-17 production, IL-7 treatment increased CXCL1/KC production, neutrophil recruitment, and bacterial clearance. Significantly, end-organ tissue injury was not significantly different between vehicle- and IL-7-treated mice. Collectively, these data illustrate that IL-7 can mediate the cross talk between Th1 and Th17 lymphocytes during sepsis such that neutrophil recruitment and bacterial clearance is improved while early tissue injury is not increased. All together, these observations may underlay novel potential therapeutic targets to improve the host immune response to sepsis

    A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway

    Get PDF
    This declaration, signed by an interdisciplinary task force of 234 experts from 83 different countries with different backgrounds, highlights the threat posed by antimicrobial resistance and the need for appropriate use of antibiotic agents and antifungal agents in hospitals worldwide especially focusing on surgical infections. As such, it is our intent to raise awareness among healthcare workers and improve antimicrobial prescribing. To facilitate its dissemination, the declaration was translated in different languages
    corecore